Review - Chapter 5

1. Complete the table below for an initial deposit of \$10,000 at a rate of 1.5%. Round each amount to the nearest dollar.

Time	6 months	1 year	5 years	20 years
Simple Interest Balance	10,075	10,150	10,750	13,000
Compound Interest Balance	10,075	10,150	10,773	13,469

- 2. Identify each of the following for the function $f(x) = -4 \cdot 2^x$. Then graph the function.
 - a. x-intercept

none

- b. y-intercept
- (0, -4)

- c. asymptote
- y = 0

d. domain

all real numbers

e. range

- y < 0
- f. interval(s) of increase/decrease deacreasing over the entire domain

- 3. Write the equation of each function after the translation described.
 - a. f(x) = 5x after a translation 3 units to the left

$$m(x) = 5(x+3)$$

b. $g(x) = 2^x$ after a translation 6 units down

$$m(x) = 2^x - 6$$

c. $h(x) = 4x^2$ after a translation 5 units right and 3 units up

$$m(x) = 4(x-5)^2 + 3$$

4. Write the exponential function represented by the table of values.

Х	0	1	2	3
У	-3	-12	-48	-192

 $f(x) = -3(4^{x})$

5. Rewrite the function g(x) in terms of the basic function f(x).

a.
$$f(x) = x^3$$

 $g(x) = (x - 6)^3$

b.
$$f(x) = -5^x$$

 $g(x) = -5^x + 9$

$$g(x) = f(x - 6)$$

$$g(x) = f(x) + 9$$

6. Represent each translation, g(x), using coordinate notation.

a.
$$f(x) = x^2$$

 $g(x) = x^2 - 4$

b.
$$f(x) = 4^x$$

 $g(x) = 4^{x-5}$

$$(x,y) \rightarrow (x,y-4)$$

$$(x,y) \rightarrow (x+5,y)$$

- 7. Sam graphed the function $f(x) = -4^x$.
 - a. Write a function that is a reflection of the function about the vertical line x = 0. $g(x) = -4^{-x}$
 - b. Write a function that is a reflection of the function about the horizontal line y = 0. $g(x) = 4^x$
- 8. Describe each graph in relation to its basic function.
 - a. Compare $f(x) = x^2 7$ to the basic function $h(x) = x^2$. The graph of f(x) is 7 units down from the graph of h(x).
 - b. Compare $f(x) = b^{x-2}$ to the basic function $h(x) = b^x$. The graph of f(x) is 2 units to the right of the graph of h(x).
 - c. Compare $f(x) = x^2 7$ to the basic function $h(x) = x^2$. The graph of f(x) is 7 units down from the graph of h(x).
- 9. Write each expression in a rational exponent form.

a.
$$\sqrt[4]{6} = 6^{\frac{1}{4}}$$

b.
$$\sqrt[3]{x^2} = x^{\frac{2}{3}}$$

10. Write each expression in radical form.

a.
$$7^{\frac{1}{3}} = \sqrt[3]{7}$$

b.
$$6^{\frac{1}{9}} = \sqrt[9]{6}$$

11. Solve each exponential equation for x.

a.
$$3^{4x} = 531,441$$

b.
$$5^{x-1} = \frac{1}{625}$$

$$X = 3$$

$$x = -3$$